Astronomy and Astrophysics – Astrophysics
Scientific paper
2007-05-16
Astrophys.J.666:368-377,2007
Astronomy and Astrophysics
Astrophysics
29 pages, 8 figures, accepted by ApJ
Scientific paper
10.1086/519834
We present a numerical method for spatially 1.5-dimensional and time-dependent studies of accretion disks around black holes, that is originated from a combination of the standard pseudo-spectral method and the adaptive domain decomposition method existing in the literature, but with a number of improvements in both the numerical and physical senses. In particular, we introduce a new treatment for the connection at the interfaces of decomposed subdomains, construct an adaptive function for the mapping between the Chebyshev-Gauss-Lobatto collocation points and the physical collocation points in each subdomain, and modify the over-simplified 1-dimensional basic equations of accretion flows to account for the effects of viscous stresses in both the azimuthal and radial directions. Our method is verified by reproducing the best results obtained previously by Szuszkiewicz & Miller on the limit-cycle behavior of thermally unstable accretion disks with moderate viscosity. A new finding is that, according to our computations, the Bernoulli function of the matter in such disks is always and everywhere negative, so that outflows are unlikely to originate from these disks. We are encouraged to study the more difficult case of thermally unstable accretion disks with strong viscosity, and wish to report our results in a subsequent paper.
li Shuang-Liang
Lu Ju-Fu
Xue Li
No associations
LandOfFree
Studies of Thermally Unstable Accretion Disks around Black Holes with Adaptive Pseudo-Spectral Domain Decomposition Method I. Limit-Cycle Behavior in the Case of Moderate Viscosity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Studies of Thermally Unstable Accretion Disks around Black Holes with Adaptive Pseudo-Spectral Domain Decomposition Method I. Limit-Cycle Behavior in the Case of Moderate Viscosity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Studies of Thermally Unstable Accretion Disks around Black Holes with Adaptive Pseudo-Spectral Domain Decomposition Method I. Limit-Cycle Behavior in the Case of Moderate Viscosity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-670022