Mathematics – Algebraic Geometry
Scientific paper
2009-05-09
Mathematics
Algebraic Geometry
14 pages, 4 figures. Ph.D thesis
Scientific paper
In this paper, we prove that: For any given finitely many distinct points $P_1,...,P_r$ and a closed subvariety $S$ of codimension $\geq 2$ in a complete toric variety over a uncountable (characteristic 0) algebraically closed field, there exists a rational curve $f:\mathbb{P}^1\to X$ passing through $P_1,...,P_r$, disjoint from $S\setminus \{P_1,...,P_r\}$ (see Main Theorem). As a corollary, we prove that the smooth loci of complete toric varieties are strongly rationally connected.
Chen Yifei
Shokurov Vyacheslav
No associations
LandOfFree
Strong rational connectedness of toric varieties does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Strong rational connectedness of toric varieties, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Strong rational connectedness of toric varieties will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-689304