Strong Fault-Tolerance for Self-Assembly with Fuzzy Temperature

Computer Science – Data Structures and Algorithms

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We consider the problem of fault-tolerance in nanoscale algorithmic self-assembly. We employ a variant of Winfree's abstract Tile Assembly Model (aTAM), the two-handed aTAM, in which square "tiles" -- a model of molecules constructed from DNA for the purpose of engineering self-assembled nanostructures -- aggregate according to specific binding sites of varying strengths, and in which large aggregations of tiles may attach to each other, in contrast to the seeded aTAM, in which tiles aggregate one at a time to a single specially-designated "seed" assembly. We focus on a major cause of errors in tile-based self-assembly: that of unintended growth due to "weak" strength-1 bonds, which if allowed to persist, may be stabilized by subsequent attachment of neighboring tiles in the sense that at least energy 2 is now required to break apart the resulting assembly; i.e., the errant assembly is stable at temperature 2. We study a common self-assembly benchmark problem, that of assembling an n x n square using O(log n) unique tile types, under the two-handed model of self-assembly. Our main result achieves a much stronger notion of fault-tolerance than those achieved previously. Arbitrary strength-1 growth is allowed (i.e., the temperature is "fuzzy" and may drift from 2 to 1 for arbitrarily long); however, any assembly that grows sufficiently to become stable at temperature 2 is guaranteed to assemble at temperature 2 into the correct final assembly of an n x n square. In other words, errors due to insufficient attachment, which is the cause of errors studied in earlier papers on fault-tolerance, are prevented absolutely in our main construction, rather than only with high probability and for sufficiently small structures, as in previous fault-tolerance studies.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Strong Fault-Tolerance for Self-Assembly with Fuzzy Temperature does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Strong Fault-Tolerance for Self-Assembly with Fuzzy Temperature, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Strong Fault-Tolerance for Self-Assembly with Fuzzy Temperature will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-396607

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.