Strong approximation for the total space of certain quadric fibrations

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

26 pages, in English

Scientific paper

We study equations in four variables (x,y,z,t) of the shape q(x,y,z)=P(t), where q(x,y,z) is an indefinite ternary quadratic form over the integers and P(t) is a polynomial in one variable with integral coefficients. If P(t) is not the product of a constant and the square of a polynomial, strong approximation holds for integral solutions (x,y,z,t). In the general case, we show that the integral Brauer-Manin conditions are the only obstructions to strong approximation. We actually study the analogous situation over an arbitrary number field. --- Nous \'etudions les \'equations \`a quatre variables (x,y,z,t) \`a coefficients entiers du type q(x,y,z)=P(t), o\`u q(x,y,z) est une forme quadratique enti\`ere ternaire ind\'efinie sur les r\'eels, et P(t) un polyn\^ome \`a coefficients entiers en une variable. Lorsque le polyn\^ome n'est pas le produit d'une constante et d'un carr\'e de polyn\^ome, nous \'etablissons l'approximation forte pour les solutions de ces \'equations en entiers (x,y,z,t). Dans le cas g\'en\'eral, nous montrons que l'obstruction de Brauer-Manin enti\`ere est la seule obstruction \`a l'approximation forte. Nous \'etudions la situation sur un corps de nombres quelconque.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Strong approximation for the total space of certain quadric fibrations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Strong approximation for the total space of certain quadric fibrations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Strong approximation for the total space of certain quadric fibrations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-490101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.