Mathematics – Algebraic Geometry
Scientific paper
2006-06-17
Mathematics
Algebraic Geometry
Scientific paper
Let $\Phi $ be a Drinfeld $\mathbf{F}\_{q}[T]$-module of rank 2, over a
finite field $L=\mathbf{F}\_{q^{n}}$. We will study the cyclic property of the
structure $L^{\Phi}.$ We will prove that the latter is cyclic only for trivial
extensions of $\mathbf{F}\_{q}$.
No associations
LandOfFree
Statistique sur la cyclicité de A-module de Drinfeld de rang 2 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Statistique sur la cyclicité de A-module de Drinfeld de rang 2, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Statistique sur la cyclicité de A-module de Drinfeld de rang 2 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-65753