Astronomy and Astrophysics – Astronomy
Scientific paper
Dec 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009aspc..415..127f&link_type=abstract
The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding ASP Conference Series, Vol. 415, proceedings of a meeti
Astronomy and Astrophysics
Astronomy
Scientific paper
Convective collapse, a theoretically predicted process that intensifies existing weak magnetic fields in the solar atmosphere, was first directly observed in a single event by Nagata et al. (2008) using the high resolution Solar Optical Telescope (SOT) of the Hinode satellite. Using the same space telescope, we observed 49 such events and present a statistical analysis of convective collapse events. Our data sets consist of high resolution time series of polarimetric spectral scans of two iron lines formed in the lower photosphere and filter images in Mg I b2 and Ca II H. We were thus able to study the implication of convective collapse events on the high photospheric and the chromospheric layers. The physical parameters from the full Stokes profiles were obtained with the MERLIN Milne-Eddington inversion code. For each of the 49 events we determined the duration, maximum photospheric downflow, and field strength increase. We found event durations of about 10 minutes and field strengths of up to 1.65 kG.
Centeno Rebecca
de Wijn Alfred G.
Fischer C. E.
Keller Christoph U.
Lites Bruce W.
No associations
LandOfFree
Statistics of Convective Collapse Events in the Photosphere and Chromosphere Observed with the HINODE SOT does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Statistics of Convective Collapse Events in the Photosphere and Chromosphere Observed with the HINODE SOT, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Statistics of Convective Collapse Events in the Photosphere and Chromosphere Observed with the HINODE SOT will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1110781