Statistical stability for robust classes of maps with non-uniform expansion

Mathematics – Dynamical Systems

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

42 pages

Scientific paper

We consider open sets of maps in a manifold $M$ exhibiting non-uniform expanding behaviour in some domain $S\subset M$. Assuming that there is a forward invariant region containing $S$ where each map has a unique SRB measure, we prove that under general uniformity conditions, the SRB measure varies continuously in the $L^1$-norm with the map. As a main application we show that the open class of maps introduced in [V] fits to this situation, thus proving that the SRB measures constructed in [A] vary continuously with the map.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Statistical stability for robust classes of maps with non-uniform expansion does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Statistical stability for robust classes of maps with non-uniform expansion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Statistical stability for robust classes of maps with non-uniform expansion will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-590473

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.