Mathematics – Statistics Theory
Scientific paper
2011-02-14
Mathematics
Statistics Theory
Scientific paper
The Hirsch index (commonly referred to as h-index) is a bibliometric indicator which is widely recognized as effective for measuring the scientific production of a scholar since it summarizes size and impact of the research output. In a formal setting, the h-index is actually an empirical functional of the distribution of the citation counts received by the scholar. Under this approach, the asymptotic theory for the empirical h-index has been recently exploited when the citation counts follow a continuous distribution and, in particular, variance estimation has been considered for the Pareto-type and the Weibull-type distribution families. However, in bibliometric applications, citation counts display a distribution supported by the integers. Thus, we provide general properties for the empirical h-index under the small- and large-sample settings. In addition, we also introduce consistent nonparametric variance estimation, which allows for the implemention of large-sample set estimation for the theoretical h-index.
Baccini Alberto
Barabesi Lucio
Marcheselli Marzia
Pratelli Luca
No associations
LandOfFree
Statistical analysis of the Hirsch Index does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Statistical analysis of the Hirsch Index, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Statistical analysis of the Hirsch Index will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-215260