Mathematics – Operator Algebras
Scientific paper
2009-07-22
Mathematics
Operator Algebras
Scientific paper
Let $\ell^p$ be the space of all $p$-summable sequences on $\mathbb{Z}$. An
infinite matrix is said to have $\ell^p$-stability if it is bounded and has
bounded inverse on $\ell^p$. In this paper, a practical criterion is
established for the $\ell^p$-stability of convolution-dominated infinite
matrices.
No associations
LandOfFree
Stability Criterion for Convolution-Dominated Infinite Matrices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Stability Criterion for Convolution-Dominated Infinite Matrices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stability Criterion for Convolution-Dominated Infinite Matrices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-354324