Spin glass models for a network of real neurons

Biology – Quantitative Biology – Neurons and Cognition

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

This is an extended version of arXiv:q-bio.NC/0611072

Scientific paper

Ising models with pairwise interactions are the least structured, or maximum-entropy, probability distributions that exactly reproduce measured pairwise correlations between spins. Here we use this equivalence to construct Ising models that describe the correlated spiking activity of populations of 40 neurons in the salamander retina responding to natural movies. We show that pairwise interactions between neurons account for observed higher-order correlations, and that for groups of 10 or more neurons pairwise interactions can no longer be regarded as small perturbations in an independent system. We then construct network ensembles that generalize the network instances observed in the experiment, and study their thermodynamic behavior and coding capacity. Based on this construction, we can also create synthetic networks of 120 neurons, and find that with increasing size the networks operate closer to a critical point and start exhibiting collective behaviors reminiscent of spin glasses. We examine closely two such behaviors that could be relevant for neural code: tuning of the network to the critical point to maximize the ability to encode diverse stimuli, and using the metastable states of the Ising Hamiltonian as neural code words.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Spin glass models for a network of real neurons does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Spin glass models for a network of real neurons, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spin glass models for a network of real neurons will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-33960

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.