Spherical Averages on Regular and Semiregular Graphs

Mathematics – Combinatorics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

In 1966, P. Guenther proved the following result: Given a continuous function f on a compact surface M of constant curvature -1 and its periodic lift g to the universal covering, the hyperbolic plane, then the averages of the lift g over increasing spheres converge to the average of the function f over the surface M. In this article, we prove similar results for functions on the vertices and edges of regular and semiregular graphs, with special emphasis on the convergence rate. We also consider averages over more general sets like arcs, tubes and horocycles.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Spherical Averages on Regular and Semiregular Graphs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Spherical Averages on Regular and Semiregular Graphs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spherical Averages on Regular and Semiregular Graphs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-443327

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.