Other
Scientific paper
Aug 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007epsc.conf..773b&link_type=abstract
European Planetary Science Congress 2007, Proceedings of a conference held 20-24 August, 2007 in Potsdam, Germany. Online at ht
Other
Scientific paper
Space weather conditions, geomagnetic variations, virtual ionospheric height and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We examine the solar wind conditions and the auroral equatorial ionosphere response to illustrate what kind of solar wind parameters during the geomagnetic storms leads to short-term variations of the critical frequency foF2 and virtual height at the Earth ionosphere from the auroral zone to the equator. Model simulations as disturbed ionospheric wind dynamo do not allow explaining a significant part of the experimental data. Additional investigations of the ionospheric characteristics are required to clear up the origin of the short-term equatorial ionospheric variations. The critical frequency foF2 and virtual heights observed by the ionosondes are good indicators of the true layer heights and electron concentration and may provide information about the equatorial ionosphere dynamics. Intensive magnetospheric and ionospheric currents during geomagnetic storms disturb the quiet ionosphere and cause the observed short-term variations of the ionospheric characteristics. The ionosheric wind dynamo is considered as an important and the main mechanism in generation of ionospheric electric currents and fields. The disturbed ionospheric wind dynamo can be the generator of the equatorial ionospheric electric currents during geomagnetic storms in the aftermath of strong auroral heating. The magnetospheric electric field directly penetrating into the low-latitude ionosphere can be another source of electric field. During disturbed space weather conditions magnetospheric electric fields disturb the auroral ionosphere forming auroral electrojets and by the high-latitude electric field and termospheric disturbances can penetrate to the equatorial ionosphere. That is the reason the equatorial ionospheric electric field variations like geomagnetic variations are complex and result of superposition of different disturbing agents. Numerous studies present the experimental and theoretical relations between the solar wind, auroral ionosphere and geomagnetic variations. However, the equatorial ionosphere has been assumed to be free from the influence of the auroral electric fields. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998 - 1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a geomagnetic storm. The ionospheric 5-min variations at the equatorial stations which allow calculating in detail time delays of the auroral and equatorial ionospheric phenomena are scantily known. These data demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. We suppose that these ionospheric phenomena are due space weather conditions and interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region 1 and Region 2 the field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere. We show that the equatorial ionosphere is a very sensitive indicator of the solar wind conditions and geomagnetic storms. Nowadays geomagnetic storms can be presented as a measure of energy transfer from the solar wind to the magnetosphere. Its magnitude is inevitably a function of the solar wind properties, the state of the magnetosphere, and the physical processes involved in the solar wind-magnetosphere interaction. Ionosphere effects of the solar wind is much complex. It is very difficult to separate the agents forming ionospheric disturbances during geomagnetic storms. It is considered that the storm wind driven electric fields are responsible for the larger amplitudes and longer lifetimes of the drift perturbations following sudden decreases in convection compared to those associated with sudden convection enhancements. In addition to these reasons we suppose that day-time and night-time equatorial ionosphere have to respond to westward and eastward auroral electrojets and the field-aligned currents by the different way while large-scale internal gravity waves and changes in neutral composition and in neutral wind system have to show the same effect in sign and there are problems to explain positive ionospheric storms. Furthermore, from the presented geomagnetic storms which AU and AL indices have very different amplitudes (nighttime auroral electrojets are much stronger daytime ones AL/AU˜5) and yet it is impossible from models to take account theses effects from termospheric models. It should be noted that amplitudes of AU and AL very variable during different storms, so there are different the IMF Bz and By patterns of auroral electrojets and related the field-aligned currents. Numerical modeling of auroral electrojets during geomagnetic disturbances effects of FAC as well as the polar cap potential drop difference in the auroral electrojet distribution and precipitation of high-energy auroral particles are considered. We suppose to explain of substorm effects in foF2 it is not enough to involve local processes but it is necessary to consider existential distribution of all parameters of near-Earth plasma. In our cases the IMF Bz and Joule heating can show the same effect to decrease of foF2 variations but quick foF2 depression and its correlation the negative the IMF Bz duration seems to show the field-aligned current effect on the equatorial ionosphere. The examples demonstrated in our study show that the strong auroral electrojets were formed by coupling of the solar wind with the magnetosphere when the Bz turned southward and the solar wind velocity increased. At the same time the equatorial night-time ionosphere parameters showed the short-term variations in the virtual ionospheric height and foF2. For example, the ionospheric heights and the critical frequency foF2 at low latitudes were very different in periods when the Bz-component turns to north (the quiet day conditions) and when Bz-component turns on south (the main phase of magnetic storms). Distinction between the quiet and disturbed periods in the heights reached values up to 150 km and more. It is also evident from these examples that the solar wind controls not only the auroral ionosphere but the eqtatorial ionosphere too. Time delay around 40 min between the Bz IMF and the equatorial ionospheric variations during the geomagnetic storms allows us to make this assumption. The latitudinal and the longitudinal extent the auroral electrojets and its movements are well determined by the IMF Bz. These conditions and a good conductivity of the night ionosphere allow the auroral electric fields move closer to the equator. In consequence, the auroral electric fields penetrate to the equator and an additional night-time current system can form at the equatorial ionosphere and change the true layer heights and electron concentration. This current system may be linked to the Region II field-aligned currents (FAC) during the westward auroral electrojet formation at the night ionosphere. It is well known that the field-aligned currents are closely connected with the auroral electrojets and the DP systems. These currents location and intensity are defined by the solar wind conditions. If the electric fields from FAC of Region II can penetrate through the midlatitudes to the low-latitude ionosphere and create the eastward equatorial electric field there then this electric field can decrease the nighttime equatorial electrojet current and increa
No associations
LandOfFree
Space weather and the Earth ionosphere from auroral zone to equator does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Space weather and the Earth ionosphere from auroral zone to equator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Space weather and the Earth ionosphere from auroral zone to equator will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-972483