Mathematics – Differential Geometry
Scientific paper
2004-06-27
Acta Appl.Math. 67 (2001) 59-89
Mathematics
Differential Geometry
Scientific paper
In an earlier paper of the authors it was shown that the sheaf theoretically based recently developed abstract differential geometry of the first author can in an easy and natural manner incorporate singularities on arbitrary closed nowhere dense sets in Euclidean spaces, singularities which therefore can have arbitrary large positive Lebesgue measure. As also shown, one can construct in such a singular context a de Rham cohomology, as well as a short exponential sequence, both of which are fundamental in differential geometry. In this paper, these results are significantly strengthened, motivated by the so called space-time foam structures in general relativity, where singularities can be dense. In fact, this time one can deal with singularities on arbitrary sets, provided that their complementaries are dense, as well. In particular, the cardinal of the set of singularities can be larger than that of the nonsingular points.
Mallios Anastasios
Rosinger Elemer E.
No associations
LandOfFree
Space-time foam dense singularities and de Rham cohomology does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Space-time foam dense singularities and de Rham cohomology, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Space-time foam dense singularities and de Rham cohomology will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-281083