Solvable real rigid Lie algebras are not necessarily completely solvable [Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles]

Mathematics – Representation Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8 pages, text in french

Scientific paper

We show that a solvable real rigid Lie algebra is not completelt rigid, by
constructing an example of minimal dimension where the external torus is not
spanned by $ad$-semisimple derivations over $\mathbb{R}$. We analyze the real
forms of nilradicals of solvable rigid Lie algebras in dimensions $n\leq 7$ and
give the real classification for dimension 8.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Solvable real rigid Lie algebras are not necessarily completely solvable [Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles] does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Solvable real rigid Lie algebras are not necessarily completely solvable [Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles], we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solvable real rigid Lie algebras are not necessarily completely solvable [Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles] will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-470275

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.