Mathematics – Representation Theory
Scientific paper
2005-10-13
Mathematics
Representation Theory
8 pages, text in french
Scientific paper
We show that a solvable real rigid Lie algebra is not completelt rigid, by
constructing an example of minimal dimension where the external torus is not
spanned by $ad$-semisimple derivations over $\mathbb{R}$. We analyze the real
forms of nilradicals of solvable rigid Lie algebras in dimensions $n\leq 7$ and
give the real classification for dimension 8.
Ancochea Bermudez J. M.
Campoamor-Stursberg Rutwig
Vergnolle Garcia L.
No associations
LandOfFree
Solvable real rigid Lie algebras are not necessarily completely solvable [Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles] does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Solvable real rigid Lie algebras are not necessarily completely solvable [Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles], we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solvable real rigid Lie algebras are not necessarily completely solvable [Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles] will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-470275