Astronomy and Astrophysics – Astrophysics
Scientific paper
1996-06-03
Astronomy and Astrophysics
Astrophysics
27 pages, uses aasms4.sty; 18 PostScript figures (1.57Mb gziped, 8.67Mb gunziped) available from http://www.astro.lsa.umich.
Scientific paper
10.1086/303652
A series of simulated maps showing the appearance in total intensity of flows computed using a recently developed relativistic hydrodynamic code (Duncan \& Hughes 1994: ApJ, 436, L119) are presented. The radiation transfer calculations were performed by assuming the flow is permeated by a magnetic field and fast particle distribution in energy equipartition, with energy density proportional to the hydrodynamic energy density (i.e., pressure). We find that relativistic flows subject to strong perturbations exhibit a density structure consisting of a series of nested bow shocks, and that this structure is evident in the intensity maps for large viewing angles. However, for viewing angles $<30^{\circ}$, differential Doppler boosting leads to a series of axial knots of emission, similar to the pattern exhibited by many VLBI sources. The appearance of VLBI knots is determined primarily by the Doppler boosting of parts of a more extended flow. To study the evolution of a perturbed jet, a time series of maps was produced and an integrated flux light curve created. The light curve shows features characteristic of a radio loud AGN: small amplitude variations and a large outburst. We find that in the absence of perturbations, jets with a modest Lorentz factor ($\sim 5$) exhibit complex intensity maps, while faster jets (Lorentz factor $\sim 10$) are largely featureless. We also study the appearance of kiloparsec jet-counterjet pairs by producing simulated maps at relatively large viewing angles; we conclude that observed hot spot emission is more likely to be associated with the Mach disk than with the outer, bow shock.
Duncan Comer G.
Hughes Philip A.
Mioduszewski Amy J.
No associations
LandOfFree
Simulated VLBI Images From Relativistic Hydrodynamic Jet Models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Simulated VLBI Images From Relativistic Hydrodynamic Jet Models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simulated VLBI Images From Relativistic Hydrodynamic Jet Models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-184509