Simple Riesz groups having wild intervals

Mathematics – Operator Algebras

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

27 pages

Scientific paper

We prove that every partially ordered simple group of rank one which is not Riesz embeds into a simple Riesz group of rank one if and only if it is not isomorphic to the additive group of the rationals. Using this result, we construct examples of simple Riesz groups of rank one $G$, containing unbounded intervals $(D_n)_{n\geq 1}$ and $D$, that satisfy: (a) For each $n\geq 1$, $tD_n\ne G^+$ for every $t< q_n$, but $q_nD_n=G^+$ (where $(q_n)$ is a sequence of relatively prime integers); (b) For every $n\geq 1$, $nD\ne G^+$. We sketch some potential applications of these results in the context of K-Theory.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Simple Riesz groups having wild intervals does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Simple Riesz groups having wild intervals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simple Riesz groups having wild intervals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-235142

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.