Astronomy and Astrophysics – Astrophysics
Scientific paper
Jan 2012
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012aas...21913606w&link_type=abstract
American Astronomical Society, AAS Meeting #219, #136.06
Astronomy and Astrophysics
Astrophysics
Scientific paper
This paper describes SiC mirrors that are large, ultra-lightweight, and actively controlled, for use in space telescopes. "Advanced Hybrid Mirrors” (AHMs) utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. They use replication techniques for high optical quality as well as rapid, low cost manufacturing. AHMs up to 1.35m in size have been made and tested, demonstrating wavefront error to better than the visible diffraction limit. AHMs can be fabricated at production rates after the first unit delivery as fast as 48 day intervals. "Superpolished Si/SiC Active Mirrors” (SSAMs) are similar to AHMs but the SiC mirror substrates have a layer of Si deposited on them to enable direct superpolishing. SSAMs can be much larger, can operate over a wider temperature range, and are better suited to UV astronomy. To make SSAMs larger than 1.8 m, multiple substrates can be joined together, using brazing techniques. Using wavefront sensing and control technology to command the embedded solid-state actuators, final mirror figure will be set after launch. This gives the active SiC mirror the ability to correct nearly any optical error, occurring anywhere in the optical system. As a result, active SiC mirrors can be made to relaxed figure requirements, enabling optical replication, or speeding up polishing, while assuring excellent final performance. Active SiC mirrors will reduce cost, risk and schedule for future astrophysics missions. Their high control authority allows relaxation of fabrication and assembly tolerances from optical to mechanical levels, speeding I & T. They enable rapid system testing to within required performance levels, even in 1 G, lowering mission risk. They are lighter weight and more durable than glass mirrors.
No associations
LandOfFree
SiC for Space Optics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with SiC for Space Optics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and SiC for Space Optics will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1575470