Computer Science – Discrete Mathematics
Scientific paper
2005-04-05
Computer Science
Discrete Mathematics
16 pages; 8 figures; to appear in IEEE Transactions on Information Theory, Aug 2006
Scientific paper
One approach to designing structured low-density parity-check (LDPC) codes with large girth is to shorten codes with small girth in such a manner that the deleted columns of the parity-check matrix contain all the variables involved in short cycles. This approach is especially effective if the parity-check matrix of a code is a matrix composed of blocks of circulant permutation matrices, as is the case for the class of codes known as array codes. We show how to shorten array codes by deleting certain columns of their parity-check matrices so as to increase their girth. The shortening approach is based on the observation that for array codes, and in fact for a slightly more general class of LDPC codes, the cycles in the corresponding Tanner graph are governed by certain homogeneous linear equations with integer coefficients. Consequently, we can selectively eliminate cycles from an array code by only retaining those columns from the parity-check matrix of the original code that are indexed by integer sequences that do not contain solutions to the equations governing those cycles. We provide Ramsey-theoretic estimates for the maximum number of columns that can be retained from the original parity-check matrix with the property that the sequence of their indices avoid solutions to various types of cycle-governing equations. This translates to estimates of the rate penalty incurred in shortening a code to eliminate cycles. Simulation results show that for the codes considered, shortening them to increase the girth can lead to significant gains in signal-to-noise ratio in the case of communication over an additive white Gaussian noise channel.
Kashyap Navin
Leyba David
Milenkovic Olgica
No associations
LandOfFree
Shortened Array Codes of Large Girth does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Shortened Array Codes of Large Girth, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shortened Array Codes of Large Girth will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-37897