Computer Science – Artificial Intelligence
Scientific paper
2009-06-17
Computer Science
Artificial Intelligence
9 pages, 4 figures, presented at BISFAI 2009
Scientific paper
We consider the following sequential decision problem. Given a set of items of unknown utility, we need to select one of as high a utility as possible (``the selection problem''). Measurements (possibly noisy) of item values prior to selection are allowed, at a known cost. The goal is to optimize the overall sequential decision process of measurements and selection. Value of information (VOI) is a well-known scheme for selecting measurements, but the intractability of the problem typically leads to using myopic VOI estimates. In the selection problem, myopic VOI frequently badly underestimates the value of information, leading to inferior sensing plans. We relax the strict myopic assumption into a scheme we term semi-myopic, providing a spectrum of methods that can improve the performance of sensing plans. In particular, we propose the efficiently computable method of ``blinkered'' VOI, and examine theoretical bounds for special cases. Empirical evaluation of ``blinkered'' VOI in the selection problem with normally distributed item values shows that is performs much better than pure myopic VOI.
Shimony Solomon Eyal
Tolpin David
No associations
LandOfFree
Semi-Myopic Sensing Plans for Value Optimization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Semi-Myopic Sensing Plans for Value Optimization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semi-Myopic Sensing Plans for Value Optimization will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-223058