Other
Scientific paper
Dec 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006agufm.t21g..06d&link_type=abstract
American Geophysical Union, Fall Meeting 2006, abstract #T21G-06
Other
1000 Geochemistry, 1031 Subduction Zone Processes (3060, 3613, 8170, 8413), 1038 Mantle Processes (3621), 1040 Radiogenic Isotope Geochemistry, 1051 Sedimentary Geochemistry
Scientific paper
Strong slab signatures in the lavas of the of the Kurile volcanic arc and their systematic changes across this unusually wide (~120-200km above the downgoing slab) arc provide excellent leverage for investigating the changing nature of subduction components and mixing processes across volcanic arcs. Results of new and published geochemical transects of the Kurile arc indicate a waning fluid subduction component across the arc (Bailey et al., Contrib. Mineral. Petrol., 1987; Zhuralev et al., Chem. Geol., 1987; Ryan et al., Science, 1995; Noll, et al., Geochimica et Cosmochimica Acta, 1996; Ishikawa and Tera, Earth Planet. Sci. Lett., 1997; Morris and Ryan, Treatise on Geochemistry, 2003); little geochemical change is observed along the arc. Boron, Sb, As, Pb, Cs, Ba, and Be, are progressively distilled from the slab in approximately decreasing efficiency. When the effects of decreasing degree of partial melting towards the rear-arc are minimized, Cs, Ba, and Be do not return to Pacific MORB values, indicating that they are still being added to the mantle wedge beneath the rear-arc. Despite the longer transit times, and hence additional decay of cosmogenic 10Be (t1/2=1.5Ma), 10Be/9Be ratios in the rear arc are frequently greater than or comparable to those measured at the front and requires (young, <10Ma) sediment contribution across the width of the arc, which likely reflects a greater proportion of sediment Be in rear-arc lavas, possibly as a melt or supercritical fluid (Johnson and Plank, G3, 1999). To characterize the incoming sediment and clarify the sediment dynamics beneath the Kurile arc and, new trace element, radiogenic isotope, and 10Be concentration data have been measured for a 250 meter section of marine sediments from ODP Site 1179 ~550 km outboard of the trench; these data are integrated with those of the Kurile arc lavas. Initial calculations suggest a maximum 10Be inventory of ~1.5x1013 atoms/cm2 in the incoming sediment column, which translates to a flux to the point beneath the volcanic front of ~3.4x10^{24} atoms/km-arc-Myr (corrected for additional decay during subduction). The input values will be refined with data from samples closer to the trench, but assuming magma production rates similar to other NW Pacific island arcs (30-60 km3/km-arc-Myr; Dimalanta et al., Earth Planet. Sci. Lett., 2002), a reasonable estimate for the upper limit for the 10Be recycling efficiency (ratio of 10Be flux in / 10Be flux out) is 12-24%. This range overlaps estimates for other NW Pacific island arcs (Morris et al., Rev. in Mineral. and Geochem., 2002; Morris and Ryan, Treatise on Geochemistry, 2003), with the exception of the adjacent Kamchatkan arc, which has no 10Be enrichment and has been considered an endmember for little or no sediment involvement in arc lavas (Kersting and Arculus, Earth Planet. Sci. Lett., 1995; Turner et al., Contrib. Mineral. Petrol., 1998). Recent work details the involvement of slab components in arc lavas by integrating fluid- and melt-sensitive geochemical tracers to map the transition across the arc, which may place constraints on surface temperatures of this old, cold Pacific slab.
Dreyer B.
Gill John J.
Morris Jacob
Tera Fouad
No associations
LandOfFree
Sediment dynamics and the changing nature of the subduction component beneath the Kurile volcanic Arc does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Sediment dynamics and the changing nature of the subduction component beneath the Kurile volcanic Arc, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sediment dynamics and the changing nature of the subduction component beneath the Kurile volcanic Arc will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-962811