Computer Science – Cryptography and Security
Scientific paper
2004-11-10
Computer Science
Cryptography and Security
Submitted for publication
Scientific paper
Chebyshev polynomials have been recently proposed for designing public-key systems. Indeed, they enjoy some nice chaotic properties, which seem to be suitable for use in Cryptography. Moreover, they satisfy a semi-group property, which makes possible implementing a trapdoor mechanism. In this paper we study a public key cryptosystem based on such polynomials, which provides both encryption and digital signature. The cryptosystem works on real numbers and is quite efficient. Unfortunately, from our analysis it comes up that it is not secure. We describe an attack which permits to recover the corresponding plaintext from a given ciphertext. The same attack can be applied to produce forgeries if the cryptosystem is used for signing messages. Then, we point out that also other primitives, a Diffie-Hellman like key agreement scheme and an authentication scheme, designed along the same lines of the cryptosystem, are not secure due to the aforementioned attack. We close the paper by discussing the issues and the possibilities of constructing public key cryptosystems on real numbers.
Bergamo Pina
D'Arco Paolo
Kocarev Ljupco
Santis Alfredo de
No associations
LandOfFree
Security of public key cryptosystems based on Chebyshev Polynomials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Security of public key cryptosystems based on Chebyshev Polynomials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Security of public key cryptosystems based on Chebyshev Polynomials will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-480154