Mathematics – Classical Analysis and ODEs
Scientific paper
2000-03-24
J. Comp. Appl. Math. 118 (2000) 43-69
Mathematics
Classical Analysis and ODEs
33 pages
Scientific paper
For a second-order linear differential equation with two irregular singular points of rank three, multiple Laplace-type contour integral solutions are considered. An explicit formula in terms of the Stokes multipliers is derived for the characteristic exponent of the multiplicative solutions. The Stokes multipliers are represented by converging series with terms for which limit formulas as well as more detailed asymptotic expansions are available. Here certain new, recursively known coefficients enter, which are closely related to but different from the coefficients of the formal solutions at one of the irregular singular points of the differential equation. The coefficients of the formal solutions then appear as finite sums over subsets of the new coefficients. As a by-product, the leading exponential terms of the asymptotic behaviour of the late coefficients of the formal solutions are given, and this is a concrete example of the structural results obtained by Immink in a more general setting. The formulas displayed in this paper are not of merely theoretical interest, but they also are complete in the sense that they could be (and have been) implemented for computing accurate numerical values of the characteristic exponent, although the computational load is not small and increases with the rank of the singular point under consideration.
No associations
LandOfFree
Second-order linear differential equations with two irregular singular points of rank three: the characteristic exponent does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Second-order linear differential equations with two irregular singular points of rank three: the characteristic exponent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Second-order linear differential equations with two irregular singular points of rank three: the characteristic exponent will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-370502