Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics
Scientific paper
2010-10-22
Astronomy and Astrophysics 525 (2011) A108
Astronomy and Astrophysics
Astrophysics
Galaxy Astrophysics
13 pages, 13 figures. Accepted for publication in Astronomy and Astrophysics. v2: minor typo corrections, update of reference
Scientific paper
10.1051/0004-6361/201015260
Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected at a longer time scale when the light of remote stars crosses an interstellar molecular cloud, but it has never been observed at optical wavelength. In a favorable case, the light of a background star can be subject to stochastic fluctuations on the order of a few percent at a characteristic time scale of a few minutes. Our ultimate aim is to discover or exclude these scintillation effects to estimate the contribution of molecular hydrogen to the Galactic baryonic hidden mass. This feasibility study is a pathfinder toward an observational strategy to search for scintillation, probing the sensitivity of future surveys and estimating the background level. Methods: We searched for scintillation induced by molecular gas in visible dark nebulae as well as by hypothetical halo clumpuscules of cool molecular hydrogen ($\mathrm{H_2-He}$) during two nights. We took long series of 10s infrared exposures with the ESO-NTT telescope toward stellar populations located behind visible nebulae and toward the Small Magellanic Cloud (SMC). We therefore searched for stars exhibiting stochastic flux variations similar to what is expected from the scintillation effect. According to our simulations of the scintillation process, this search should allow one to detect (stochastic) transverse gradients of column density in cool Galactic molecular clouds of order of $\sim 3\times 10^{-5}\,\mathrm{g/cm^2/10\,000\,km}$. Results: We found one light-curve that is compatible with a strong scintillation effect through a turbulent structure characterized by a diffusion radius $R_{diff}<100\, km$ in the B68 nebula. Complementary observations are needed to clarify the status of this candidate, and no firm conclusion can be established from this single observation. We can also infer limits on the existence of turbulent dense cores (of number density $n>10^9\, cm^{-3}$) within the dark nebulae. Because no candidate is found toward the SMC, we are also able to establish upper limits on the contribution of gas clumpuscules to the Galactic halo mass. Conclusions: The limits set by this test do not seriously constrain the known models, but we show that the short time-scale monitoring for a few $10^6 star\times hour$ in the visible band with a $>4$ meter telescope and a fast readout camera should allow one to quantify the contribution of turbulent molecular gas to the Galactic halo. The LSST (Large Synoptic Survey Telescope) is perfectly suited for this search.
Ansari Rafat R.
Habibi Farhang
Moniez Marc
Rahvar Sohrab
No associations
LandOfFree
Searching for Galactic hidden gas through interstellar scintillation: Results from a test with the NTT-SOFI detector does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Searching for Galactic hidden gas through interstellar scintillation: Results from a test with the NTT-SOFI detector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Searching for Galactic hidden gas through interstellar scintillation: Results from a test with the NTT-SOFI detector will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-659125