Computer Science – Learning
Scientific paper
2000-11-29
Data Mining and Knowledge Discovery 3(1), pp. 59-93, 1999
Computer Science
Learning
37 pages
Scientific paper
When comparing inductive logic programming (ILP) and attribute-value learning techniques, there is a trade-off between expressive power and efficiency. Inductive logic programming techniques are typically more expressive but also less efficient. Therefore, the data sets handled by current inductive logic programming systems are small according to general standards within the data mining community. The main source of inefficiency lies in the assumption that several examples may be related to each other, so they cannot be handled independently. Within the learning from interpretations framework for inductive logic programming this assumption is unnecessary, which allows to scale up existing ILP algorithms. In this paper we explain this learning setting in the context of relational databases. We relate the setting to propositional data mining and to the classical ILP setting, and show that learning from interpretations corresponds to learning from multiple relations and thus extends the expressiveness of propositional learning, while maintaining its efficiency to a large extent (which is not the case in the classical ILP setting). As a case study, we present two alternative implementations of the ILP system Tilde (Top-down Induction of Logical DEcision trees): Tilde-classic, which loads all data in main memory, and Tilde-LDS, which loads the examples one by one. We experimentally compare the implementations, showing Tilde-LDS can handle large data sets (in the order of 100,000 examples or 100 MB) and indeed scales up linearly in the number of examples.
Blockeel Hendrik
Demoen Bart
Jacobs Nico
Raedt Luc de
No associations
LandOfFree
Scaling Up Inductive Logic Programming by Learning from Interpretations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Scaling Up Inductive Logic Programming by Learning from Interpretations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scaling Up Inductive Logic Programming by Learning from Interpretations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-398119