Other
Scientific paper
Mar 1996
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996eso..pres....8.&link_type=abstract
ESO Press Release, 03/1996
Other
Scientific paper
The Story of a Rarely Seen Stellar Explosion A bright `new' star was discovered by Japanese amateur astronomer Yukio Sakurai in late February 1996. It is located in the star-rich, southern constellation of Sagittarius (The Archer) and qualifies to join an extremely select class of stars. In fact, we know only one additional object of this type and the remains of two - possibly three - others. Compared to the 6000 stars in the sky seen with the naked eye, the several millions so far catalogued, and the billions of stars photographed, it is a very special class indeed.
Nevertheless, Sakurai's star holds unique information about a dramatic evolutionary state, which all stars must to pass through whose masses are more than a few times that of the Sun, but still too small to produce a supernova explosion. This happens just before they end their active life and cool down into visual oblivion. The discovery When Yukio Sakurai inspected his sky photographs, taken in the early morning of February 21 (Japanese time), he discovered a comparatively bright `new' star in Sagittarius. Checking his earlier photographs, he found no trace of this star before January 1995, when it first appeared at a magnitude somewhat fainter than 12.5 (about 400 times fainter than what can be perceived with the naked eye). The star was also present on all later photos, throughout 1995 and the beginning of 1996. The most recent observations show that it continues to brighten, although at a much slower rate; the current visual magnitude is 11.2.
Such a discovery merits an announcement in the Circulars of the International Astronomical Union (IAU), the world-wide fast information service for observers. The communication about Sakurai's new star reached the European Southern Observatory at La Silla on February 23. Here the first spectra of the possible nova (the technical term for a star that has suddenly brightened considerably) were immediately taken at the ESO 3.6-metre telescope. This observation and the following investigations at La Silla were undertaken by a small team of ESO astronomers, including Hilmar Duerbeck, Waltraut Seitter and Stefano Benetti. Which type of nova ? Before the first spectra from ESO became available, the object was suspected to be a very slow nova , that is a small and compact `white dwarf' star in a binary system which experiences a hydrogen nuclear explosion below its surface. During a nova outburst of this type, the spectrum of the exploding star contains bright emission lines of hydrogen and other chemical elements, superimposed on a rapidly weakening, almost featureless spectrum.
But Sakurai's object showed nothing the like. Instead, the spectrum displayed a multitude of narrow absorption lines. The otherwise almost omnipresent lines of hydrogen, the most abundant chemical element in the Universe, were comparatively weak. Spectra of higher resolution, taken at the ESO 1.5-metre telescope the following night, revealed the characteristics of a fairly cool, chemically peculiar star with absorption lines of neutral helium, carbon, nitrogen, and oxygen and singly ionized lines of carbon and silicon. This spectrum is reproduced as ESO Press Photo 20/96 , accompanying this Press Release.
Another immediate action relating to the new bright star was to search for its pre-outburst state. For this, the ESO/SERC Atlas of the Southern Sky was used; this is the most detailed photographic atlas in the south and was produced in the 1970's during a joint project with the ESO (La Silla) and UK (Siding Spring, Australia) Schmidt telescopes. At the location of Sakurai's object, three very faint stars were found as well as a minute trace of a possible nebulosity.
The combination of the long phase of maximum light, the hydrogen-poor and carbon-rich outburst spectrum, and the hint of a nebulosity confirmed the suspicion of the ESO astronomers that this star had experienced its `Final Helium Flash' , the explosive, very last phase of nuclear burning in a star of medium mass. Similarity with Nova Aquilae in 1919 Sakurai's object is only the second case of an observed Final Helium Flash. The first one was the `nova' of 1919 in the northern constellation of Aquila (The Eagle), now known as the variable star V605 Aquilae and located at the center of a conspicuous nebulosity, the planetary nebula A58 [1]. A very low dispersion spectrum was taken two years later of this star. It showed the molecular bands of the C2 carbon molecule which are characteristic for a hydrogen-poor carbon star [2].
The spectrum of Sakurai's object is too warm to display molecular lines and bands, but the numerous lines of singly ionized carbon atoms seen in the ESO spectra give strong support to the assumption that the stars of 1919 and 1996 are in fact of the same nature. The birth of a planetary nebula Modern theoretical studies of stellar evolution are able to explain in quite some detail the various phases a star must pass during its life. In particular, it has been established that this evolution is critically dependent on the star's total mass.
Normal stars with masses like that of our Sun draw most of their energy from the transformation of hydrogen into helium, often referred to as `hydrogen nuclear burning'. But at some moment, the hydrogen fuel will run out and the hydrogen burning comes to an end. This phase - still many billions of years into the future for the Sun - signals the beginning of profound, increasingly rapid changes in the star which will ultimately lead to its death.
When this happens for a star that is a few times heavier than the Sun - and which is bound to experience the above-mentioned final helium flash - it next evolves to a cool and bright, giant star with a very extended atmosphere. Deep inside such a star, energy is now generated by nuclear burning of helium to carbon. During this process, the star builds up what will eventually become an incompressible (`degenerate') core of carbon. Further out, above the helium-burning shell around this core, there is a layer where hydrogen still burns to helium.
Eventually and repeatedly, a sequence of intricate processes of energy generation, as well as mixing and transport of the stellar material in different layers, produces a multitude of chemical elements and isotopes and moves them into the outer regions of the giant star. From here, strong stellar winds carry the matter into interstellar space. During its further evolution, the giant star blows off its outer layers altogether, thus exposing the very dense, very hot, small and almost `naked' nucleus of the star. Its freely escaping radiation excites spectral line emission in the ejected matter: in this way a surrounding, shining planetary nebula is born. The Helium Flash and thereafter The stellar nucleus of this planetary nebula experiences a comparatively short phase as a very compact, `pre-white dwarf star' during which some burning of hydrogen to helium still takes place near the stellar surface. But then, when this nuclear burning ceases due to lack of hydrogen, the layer with the newly created helium begins to contract. The compression proceeds rapidly until the helium reaches the maximum possible density (`becomes degenerate'). It heats up and soon acquires the high temperature of the carbon core. It is at this moment that the helium suddenly ignites in a spectacular Final Helium Flash.
In this new phase, the outward appearance of the star rapidly returns to its former, bright giant appearance, but this time it is a deceptive one. What looks to the distant observer as a `sturdy', bright giant atmosphere is nothing but the temporarily blown-up, carbon-rich layer produced at the time of the helium flash. After years or decades it will gradually become transparent and reveal the very hot and compact stellar nucleus at the center of the small, hydrogen-poor secondary planetary nebula which was created during the Final Helium Flash episode.
Thereafter, the stellar nucleus slowly cools down, this time to its final state of an inactive, cooling white dwarf. Its brightness decreases and at some moment it dr
No affiliations
No associations
LandOfFree
Sakurai's Object: a Once-In Experience does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Sakurai's Object: a Once-In Experience, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sakurai's Object: a Once-In Experience will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1645874