Roots in the mapping class groups

Mathematics – Geometric Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The purpose of this paper is the study of the roots in the mapping class groups. Let $\Sigma$ be a compact oriented surface, possibly with boundary, let $\PP$ be a finite set of punctures in the interior of $\Sigma$, and let $\MM (\Sigma, \PP)$ denote the mapping class group of $(\Sigma, \PP)$. We prove that, if $\Sigma$ is of genus 0, then each $f \in \MM (\Sigma)$ has at most one $m$-root for all $m \ge 1$. We prove that, if $\Sigma$ is of genus 1 and has non-empty boundary, then each $f \in \MM (\Sigma)$ has at most one $m$-root up to conjugation for all $m \ge 1$. We prove that, however, if $\Sigma$ is of genus $\ge 2$, then there exist $f,g \in \MM (\Sigma, \PP)$ such that $f^2=g^2$, $f$ is not conjugate to $g$, and none of the conjugates of $f$ commutes with $g$. Afterwards, we focus our study on the roots of the pseudo-Anosov elements. We prove that, if $\partial \Sigma \neq \emptyset$, then each pseudo-Anosov element $f \in \MM(\Sigma, \PP)$ has at most one $m$-root for all $m \ge 1$. We prove that, however, if $\partial \Sigma = \emptyset$ and the genus of $\Sigma$ is $\ge 2$, then there exist two pseudo-Anosov elements $f,g \in \MM (\Sigma)$ (explicitely constructed) such that $f^m=g^m$ for some $m\ge 2$, $f$ is not conjugate to $g$, and none of the conjugates of $f$ commutes with $g$. Furthermore, if the genus of $\Sigma$ is $\equiv 0 (\mod 4)$, then we can take $m=2$. Finally, we show that, if $\Gamma$ is a pure subgroup of $\MM (\Sigma, \PP)$ and $f \in \Gamma$, then $f$ has at most one $m$-root in $\Gamma$ for all $m \ge 1$. Note that there are finite index pure subgroups in $\MM (\Sigma, \PP)$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Roots in the mapping class groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Roots in the mapping class groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Roots in the mapping class groups will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-168792

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.