Mathematics – Geometric Topology
Scientific paper
2006-07-12
Mathematics
Geometric Topology
Scientific paper
The purpose of this paper is the study of the roots in the mapping class groups. Let $\Sigma$ be a compact oriented surface, possibly with boundary, let $\PP$ be a finite set of punctures in the interior of $\Sigma$, and let $\MM (\Sigma, \PP)$ denote the mapping class group of $(\Sigma, \PP)$. We prove that, if $\Sigma$ is of genus 0, then each $f \in \MM (\Sigma)$ has at most one $m$-root for all $m \ge 1$. We prove that, if $\Sigma$ is of genus 1 and has non-empty boundary, then each $f \in \MM (\Sigma)$ has at most one $m$-root up to conjugation for all $m \ge 1$. We prove that, however, if $\Sigma$ is of genus $\ge 2$, then there exist $f,g \in \MM (\Sigma, \PP)$ such that $f^2=g^2$, $f$ is not conjugate to $g$, and none of the conjugates of $f$ commutes with $g$. Afterwards, we focus our study on the roots of the pseudo-Anosov elements. We prove that, if $\partial \Sigma \neq \emptyset$, then each pseudo-Anosov element $f \in \MM(\Sigma, \PP)$ has at most one $m$-root for all $m \ge 1$. We prove that, however, if $\partial \Sigma = \emptyset$ and the genus of $\Sigma$ is $\ge 2$, then there exist two pseudo-Anosov elements $f,g \in \MM (\Sigma)$ (explicitely constructed) such that $f^m=g^m$ for some $m\ge 2$, $f$ is not conjugate to $g$, and none of the conjugates of $f$ commutes with $g$. Furthermore, if the genus of $\Sigma$ is $\equiv 0 (\mod 4)$, then we can take $m=2$. Finally, we show that, if $\Gamma$ is a pure subgroup of $\MM (\Sigma, \PP)$ and $f \in \Gamma$, then $f$ has at most one $m$-root in $\Gamma$ for all $m \ge 1$. Note that there are finite index pure subgroups in $\MM (\Sigma, \PP)$.
Bonatti Christian
Paris Luis
No associations
LandOfFree
Roots in the mapping class groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Roots in the mapping class groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Roots in the mapping class groups will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-168792