Mathematics – Analysis of PDEs
Scientific paper
2009-06-03
C. R. Acad. Sci Paris. Ser. 1336 (2003)
Mathematics
Analysis of PDEs
4 pages
Scientific paper
10.1016/S1631-073X(03)00155-9
Let $u\in C([0,T^{\ast}[;L^{n}(\mathbb{R}% ^{n})^{n})$ be a maximal solution of the Navier-Stokes equations. We prove that $u$ is $C^{\infty}$ on $]0,T^{\ast}[\times \mathbb{R}^{n}$ and there exists a constant $\varepsilon _{\ast}>0$, which depends only on $n,$ such that if $T^{\ast}$ is finite then, for all $\omega \in S(\mathbb{R}% ^{n})^{n},$ we have $\overline{\lim_{t\to T^{\ast}}}\Vert u(t)-\omega \Vert_{\mathbf{B}_{\infty}^{-1,\infty}}\geq \varepsilon_{\ast}.$
No associations
LandOfFree
Rôle de léspace de Besov $\mathbf{B}_{\infty}^{-1,\infty}$dans le contrôle de léxplosion èventuelle en temps fini des solutions régulières des équations de Navier-Stokes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Rôle de léspace de Besov $\mathbf{B}_{\infty}^{-1,\infty}$dans le contrôle de léxplosion èventuelle en temps fini des solutions régulières des équations de Navier-Stokes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rôle de léspace de Besov $\mathbf{B}_{\infty}^{-1,\infty}$dans le contrôle de léxplosion èventuelle en temps fini des solutions régulières des équations de Navier-Stokes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-194211