Rôle de léspace de Besov $\mathbf{B}_{\infty}^{-1,\infty}$dans le contrôle de léxplosion èventuelle en temps fini des solutions régulières des équations de Navier-Stokes

Mathematics – Analysis of PDEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4 pages

Scientific paper

10.1016/S1631-073X(03)00155-9

Let $u\in C([0,T^{\ast}[;L^{n}(\mathbb{R}% ^{n})^{n})$ be a maximal solution of the Navier-Stokes equations. We prove that $u$ is $C^{\infty}$ on $]0,T^{\ast}[\times \mathbb{R}^{n}$ and there exists a constant $\varepsilon _{\ast}>0$, which depends only on $n,$ such that if $T^{\ast}$ is finite then, for all $\omega \in S(\mathbb{R}% ^{n})^{n},$ we have $\overline{\lim_{t\to T^{\ast}}}\Vert u(t)-\omega \Vert_{\mathbf{B}_{\infty}^{-1,\infty}}\geq \varepsilon_{\ast}.$

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Rôle de léspace de Besov $\mathbf{B}_{\infty}^{-1,\infty}$dans le contrôle de léxplosion èventuelle en temps fini des solutions régulières des équations de Navier-Stokes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Rôle de léspace de Besov $\mathbf{B}_{\infty}^{-1,\infty}$dans le contrôle de léxplosion èventuelle en temps fini des solutions régulières des équations de Navier-Stokes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rôle de léspace de Besov $\mathbf{B}_{\infty}^{-1,\infty}$dans le contrôle de léxplosion èventuelle en temps fini des solutions régulières des équations de Navier-Stokes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-194211

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.