Mathematics – Probability
Scientific paper
2009-03-03
Annals of Applied Probability 2009, Vol. 19, No. 1, 467-476
Mathematics
Probability
Published in at http://dx.doi.org/10.1214/08-AAP536 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Inst
Scientific paper
10.1214/08-AAP536
For independent $X$ and $Y$ in the inequality $P(X\leq Y+\mu)$, we give sharp lower bounds for unimodal distributions having finite variance, and sharp upper bounds assuming symmetric densities bounded by a finite constant. The lower bounds depend on a result of Dubins about extreme points and the upper bounds depend on a symmetric rearrangement theorem of F. Riesz. The inequality was motivated by medical imaging: find bounds on the area under the Receiver Operating Characteristic curve (ROC).
Clarkson Eric
Denny J. L.
Shepp Larry
No associations
LandOfFree
ROC and the bounds on tail probabilities via theorems of Dubins and F. Riesz does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with ROC and the bounds on tail probabilities via theorems of Dubins and F. Riesz, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ROC and the bounds on tail probabilities via theorems of Dubins and F. Riesz will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-653012