Robust estimation of the scale and of the autocovariance function of Gaussian short and long-range dependent processes

Mathematics – Statistics Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

A desirable property of an autocovariance estimator is to be robust to the presence of additive outliers. It is well-known that the sample autocovariance, being based on moments, does not have this property. Hence, the use of an autocovariance estimator which is robust to additive outliers can be very useful for time-series modeling. In this paper, the asymptotic properties of the robust scale and autocovariance estimators proposed by Rousseeuw and Croux (1993) and Genton and Ma (2000) are established for Gaussian processes, with either short-range or long-range dependence. It is shown in the short-range dependence setting that this robust estimator is asymptotically normal at the rate $\sqrt{n}$, where $n$ is the number of observations. An explicit expression of the asymptotic variance is also given and compared to the asymptotic variance of the classical autocovariance estimator. In the long-range dependence setting, the limiting distribution displays the same behavior than that of the classical autocovariance estimator, with a Gaussian limit and rate $\sqrt{n}$ when the Hurst parameter $H$ is less 3/4 and with a non-Gaussian limit (belonging to the second Wiener chaos) with rate depending on the Hurst parameter when $H \in (3/4,1)$. Some Monte-Carlo experiments are presented to illustrate our claims and the Nile River data is analyzed as an application. The theoretical results and the empirical evidence strongly suggest using the robust estimators as an alternative to estimate the dependence structure of Gaussian processes.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Robust estimation of the scale and of the autocovariance function of Gaussian short and long-range dependent processes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Robust estimation of the scale and of the autocovariance function of Gaussian short and long-range dependent processes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robust estimation of the scale and of the autocovariance function of Gaussian short and long-range dependent processes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-363680

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.