Mathematics – Differential Geometry
Scientific paper
2009-09-04
Mathematics
Differential Geometry
Scientific paper
We give a global picture of the Ricci flow on the space of three-dimensional, unimodular, nonabelian metric Lie algebras considered up to isometry and scaling. The Ricci flow is viewed as a two-dimensional dynamical system for the evolution of structure constants of the metric Lie algebra with respect to an evolving orthonormal frame. This system is amenable to direct phase plane analysis, and we find that the fixed points and special trajectories in the phase plane correspond to special metric Lie algebras, including Ricci solitons and special Riemannian submersions. These results are one way to unify the study of Ricci flow on left invariant metrics on three-dimensional, simply-connected, unimodular Lie groups, which had previously been studied by a case-by-case analysis of the different Bianchi classes. In an appendix, we prove a characterization of the space of three-dimensional, unimodular, nonabelian metric Lie algebras modulo isometry and scaling.
Glickenstein David
Payne Tracy L.
No associations
LandOfFree
Ricci flow on three-dimensional, unimodular metric Lie algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ricci flow on three-dimensional, unimodular metric Lie algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ricci flow on three-dimensional, unimodular metric Lie algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-36398