Ricci-corrected derivatives and invariant differential operators

Mathematics – Differential Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Substantially revised, shortened and simplified, with new treatment of Weyl structures; 24 pages

Scientific paper

10.1016/j.difgeo.2004.07.009

We introduce the notion of Ricci-corrected differentiation in parabolic geometry, which is a modification of covariant differentiation with better transformation properties. This enables us to simplify the explicit formulae for standard invariant operators given in work of Cap, Slovak and Soucek, and at the same time extend these formulae from the context of AHS structures (which include conformal and projective structures) to the more general class of all parabolic structures (including CR structures).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Ricci-corrected derivatives and invariant differential operators does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Ricci-corrected derivatives and invariant differential operators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ricci-corrected derivatives and invariant differential operators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-421212

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.