Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009apj...699.1822g&link_type=abstract
The Astrophysical Journal, Volume 699, Issue 2, pp. 1822-1842 (2009).
Astronomy and Astrophysics
Astronomy
21
Planetary Systems: Protoplanetary Disks, Stars: Individual: Sao 206462
Scientific paper
SAO 206462 (HD 135344B) has previously been identified as a Herbig F star with a circumstellar disk with a dip in its infrared excess near 10 μm. In combination with a low accretion rate estimated from Br γ, it may represent a gapped, but otherwise primordial or "pre-transitional" disk. We test this hypothesis with Hubble Space Telescope coronagraphic imagery, FUV spectroscopy and imagery and archival X-ray data, and spectral energy distribution (SED) modeling constrained by the observed system inclination, disk outer radius, and outer disk radial surface brightness (SB) profile using the Whitney Monte Carlo Radiative Transfer Code. The essentially face-on (i lsim 20°) disk is detected in scattered light from 0farcs4 to 1farcs15 (56-160 AU), with a steep (r -9.6) radial SB profile from 0farcs6 to 0farcs93. Fitting the SB data requires a concave upward or anti-flared outer disk, indicating substantial dust grain growth and settling by 8 ± 4 Myr. The warm dust component is significantly variable in near to mid-IR excess and in temperature. At its warmest, it appears confined to a narrow belt from 0.08 to 0.2 AU. The steep SED for this dust component is consistent with grains with a<= 2.5 μm. For cosmic carbon to silicate dust composition, conspicuous 10 μm silicate emission would be expected and is not observed. This may indicate an elevated carbon to silicate ratio for the warm dust, which is not required to fit the outer disk. At its coolest, the warm dust can be fit with a disk from 0.14 to 0.31 AU, but with a higher inclination than either the outer disk or the gaseous disk, providing confirmation of the high inclination inferred from mid-IR interferometry. In tandem, the compositional and inclination difference between the warm dust and the outer dust disk suggests that the warm dust may be of second-generation origin, rather than a remnant of a primordial disk component. With its near face-on inclination, SAO 206462's disk is a prime location for planet searches.
Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Ablordeppey K.
Apai Daniel
Beerman Lori
Brittain Sean D.
Carpenter Jack W.
No associations
LandOfFree
Revealing the Structure of a Pre-Transitional Disk: The Case of the Herbig F Star SAO 206462 (HD 135344B) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Revealing the Structure of a Pre-Transitional Disk: The Case of the Herbig F Star SAO 206462 (HD 135344B), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Revealing the Structure of a Pre-Transitional Disk: The Case of the Herbig F Star SAO 206462 (HD 135344B) will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-966338