Représentations modulaires de $\mathrm{GL}_2(\mathbf{Q}_p)$ et représentations galoisiennes de dimension 2

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

19 pages

Scientific paper

We prove Breuil's conjecture concerning the reduction modulo $p$ of trianguline representations $V$ and of the representations $\Pi(V)$ of $\mathrm{GL}_2(\mathbf{Q}_p)$ associated to them by the $p$-adic Langlands correspondence. The main ingredient of the proof is the study of some smooth irreducible representations of $\mathrm{B}(\mathbf{Q}_p)$ through models built using the theory of $(\phi,\Gamma)$-modules.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Représentations modulaires de $\mathrm{GL}_2(\mathbf{Q}_p)$ et représentations galoisiennes de dimension 2 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Représentations modulaires de $\mathrm{GL}_2(\mathbf{Q}_p)$ et représentations galoisiennes de dimension 2, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Représentations modulaires de $\mathrm{GL}_2(\mathbf{Q}_p)$ et représentations galoisiennes de dimension 2 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-250303

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.