Représentations de Springer pour les groupes de réflexions complexes imprimitifs

Mathematics – Representation Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

To a spetsial complex reflection group, equipped with a root lattice in the sense of Nebe, we attach a certain finite set playing a role which is analogous to the role of the set of unipotent classes of an algebraic group. In the case of imprimitive groups, we give a combinatoric parametrization of it in terms of Malle-Shoji generalized symbols. This result provides a link between the works of Shoji on Green functions for complex reflection groups and of Broue, Kim, Malle, Rouquier, et. al. on the cyclotomic Hecke algebras and their families of characters. ----- A un groupe de reflexions complexe spetsial, muni d'un reseau radiciel au sens de Nebe, nous associons un certain ensemble fini qui doit jouer un role analogue a celui de l'ensemble des classes unipotentes d'un groupe algebrique. Dans le cas des groupes imprimitifs, nous en donnons un parametrage combinatoire en termes des symboles generalises de Malle et Shoji. Ce resultat fournit un lien entre les travaux de Shoji sur les fonctions de Green pour les groupes de reflexions complexes et ceux de Broue, Kim, Malle, Rouquier, et al. sur les algebres de Hecke cyclotomiques et leurs familles de caracteres.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Représentations de Springer pour les groupes de réflexions complexes imprimitifs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Représentations de Springer pour les groupes de réflexions complexes imprimitifs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Représentations de Springer pour les groupes de réflexions complexes imprimitifs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-569845

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.