Relativistic Doppler-boosted emission in gamma-ray binaries

Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8 pages, 7 figures, accepted for publication in A&A

Scientific paper

Gamma-ray binaries could be compact pulsar wind nebulae formed when a young pulsar orbits a massive star. The pulsar wind is contained by the stellar wind of the O or Be companion, creating a relativistic comet-like structure accompanying the pulsar along its orbit. The X-ray and the very high energy (>100 GeV, VHE) gamma-ray emissions from the binary LS 5039 are modulated on the orbital period of the system. Maximum and minimum flux occur at the conjunctions of the orbit, suggesting that the explanation is linked to the orbital geometry. The VHE modulation has been proposed to be due to the combined effect of Compton scattering and pair production on stellar photons, both of which depend on orbital phase. The X-ray modulation could be due to relativistic Doppler boosting in the comet tail where both the X-ray and VHE photons would be emitted. Relativistic aberrations change the seed stellar photon flux in the comoving frame so Doppler boosting affects synchrotron and inverse Compton emission differently. The dependence with orbital phase of relativistic Doppler-boosted (isotropic) synchrotron and (anisotropic) inverse Compton emission is calculated, assuming that the flow is oriented radially away from the star (LS 5039) or tangentially to the orbit (LS I +61 303, PSR B1259-63). Doppler boosting of the synchrotron emission in LS 5039 produces a lightcurve whose shape corresponds to the X-ray modulation. The observations imply an outflow velocity of 0.15-0.33c consistent with the expected flow speed at the pulsar wind termination shock. In LS I +61 303, the calculated Doppler boosted emission peaks in phase with the observed VHE and X-ray maximum. Doppler boosting might provide an explanation for the puzzling phasing of the VHE peak in this system.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Relativistic Doppler-boosted emission in gamma-ray binaries does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Relativistic Doppler-boosted emission in gamma-ray binaries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Relativistic Doppler-boosted emission in gamma-ray binaries will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-448879

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.