Computer Science – Artificial Intelligence
Scientific paper
2010-11-27
Computer Science
Artificial Intelligence
Scientific paper
We present a probabilistic logic programming framework to reinforcement learning, by integrating reinforce-ment learning, in POMDP environments, with normal hybrid probabilistic logic programs with probabilistic answer set seman-tics, that is capable of representing domain-specific knowledge. We formally prove the correctness of our approach. We show that the complexity of finding a policy for a reinforcement learning problem in our approach is NP-complete. In addition, we show that any reinforcement learning problem can be encoded as a classical logic program with answer set semantics. We also show that a reinforcement learning problem can be encoded as a SAT problem. We present a new high level action description language that allows the factored representation of POMDP. Moreover, we modify the original model of POMDP so that it be able to distinguish between knowledge producing actions and actions that change the environment.
No associations
LandOfFree
Reinforcement Learning in Partially Observable Markov Decision Processes using Hybrid Probabilistic Logic Programs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Reinforcement Learning in Partially Observable Markov Decision Processes using Hybrid Probabilistic Logic Programs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reinforcement Learning in Partially Observable Markov Decision Processes using Hybrid Probabilistic Logic Programs will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-589157