Regularized adaptive long autoregressive spectral analysis

Statistics – Applications

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

This paper is devoted to adaptive long autoregressive spectral analysis when (i) very few data are available, (ii) information does exist beforehand concerning the spectral smoothness and time continuity of the analyzed signals. The contribution is founded on two papers by Kitagawa and Gersch. The first one deals with spectral smoothness, in the regularization framework, while the second one is devoted to time continuity, in the Kalman formalism. The present paper proposes an original synthesis of the two contributions: a new regularized criterion is introduced that takes both information into account. The criterion is efficiently optimized by a Kalman smoother. One of the major features of the method is that it is entirely unsupervised: the problem of automatically adjusting the hyperparameters that balance data-based versus prior-based information is solved by maximum likelihood. The improvement is quantified in the field of meteorological radar.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Regularized adaptive long autoregressive spectral analysis does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Regularized adaptive long autoregressive spectral analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Regularized adaptive long autoregressive spectral analysis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-190570

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.