Mathematics – Commutative Algebra
Scientific paper
2007-07-14
Mathematics
Commutative Algebra
7 pages
Scientific paper
Let $R$ be a local ring and let ($x_1\biss x_r$) be part of a system of parameters of a finitely generated $R$-module $M,$ where $r < \dim_R M$. We will show that if ($y_1\biss y_r$) is part of a reducing system of parameters of $M$ with $(y_1\biss y_r)M=(x_1\biss x_r)M$ then $(x_1\biss x_r)$ is already reducing. Moreover, there is such a part of a reducing system of parameters of $M$ iff for all primes $P\in \supp M \cap V_R(x_1\biss x_r)$ with $\dim_R R/P = \dim_R M -r$ the localization $M_P$ of $M$ at $P$ is an $r$-dimensional \cm\ module over $R_P$. Furthermore, we will show that $M$ is a \cm module iff $y_d$ is a non zero divisor on $M/(y_1\biss y_{d-1})M$, where $(y_1\biss y_d)$ is a reducing system of parameters of $M$ ($d := \dim_R M$).
Maurer Bjorn
Stuckrad Jurgen
No associations
LandOfFree
Reducing system of parameters and the Cohen--Macaulay property does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Reducing system of parameters and the Cohen--Macaulay property, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reducing system of parameters and the Cohen--Macaulay property will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-254055