Computer Science
Scientific paper
Feb 1990
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1990gecoa..54..267g&link_type=abstract
Geochimica et Cosmochimica Acta, vol. 54, Issue 2, pp.267-282
Computer Science
11
Scientific paper
Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO 4 and (Sr, Ca) O 3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO 3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H 2 O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation G E = KBr KCl RT [ a 0 + a 1 (2 KBr -1)], where a 0 is 1.40 ± 0.02, a 1 , is -0.08 ± 0.03 at 25°C, and KBr and KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at KBr = 0.676 and at a total solubility product, = [ K + ]([ Cl - ] + [ Br - ]) = 15.35.
Busenberg Eurybiades
Glynn Pierre D.
Niel Plummer L.
Reardon Eric J.
No associations
LandOfFree
Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1841996