Mathematics – Logic
Scientific paper
Dec 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009agufm.p31d..04s&link_type=abstract
American Geophysical Union, Fall Meeting 2009, abstract #P31D-04
Mathematics
Logic
[5400] Planetary Sciences: Solid Surface Planets, [5494] Planetary Sciences: Solid Surface Planets / Instruments And Techniques, [6295] Planetary Sciences: Solar System Objects / Venus, [6297] Planetary Sciences: Solar System Objects / Instruments And Techniques
Scientific paper
It has been more than 15 years since the Magellan mission mapped Venus with S-band synthetic aperture radar (SAR) images at ~100-m resolution. Advances in radar technology are such that current Earth-orbiting SAR instruments are capable of providing images at meter-scale resolution. RAVEN (RAdar at VENus) is a mission concept that utilizes the instrument developed for the RADARSAT Constellation Mission (RCM) to map Venus in an economical, highly capable, and reliable way. RCM relies on a C-band SAR that can be tuned to generate images at a wide variety of resolutions and swath widths, ranging from ScanSAR mode (broad swaths at 30-m resolution) to strip-map mode (resolutions as fine as 3 m), as well as a spotlight mode that can image patches at 1-m resolution. In particular, the high-resolution modes allow the landing sites of previous missions to be pinpointed and characterized. Repeat-pass interferometric SAR (InSAR) and stereo radargrammetry provide options for constraining topography to better than 100-m horizontal and 10-m vertical resolution. InSAR also provides the potential for detecting surface deformation at centimeter precision. Performing InSAR requires precise knowledge and control of the orbital geometry, and for this reason a 600-km circular polar orbit is favored. This configuration causes the equatorial nadir point to move ~9 km per orbit. Considering both ascending and descending passes, the spacecraft will pass over every point on the planet in half a Venus day (~4 Earth months). The ability to transmit data back to Earth via the Deep Space Network is the primary limiting factor on the volume of data that can be collected. Our current estimates indicate that within an imaging cycle of one Venus day we can image 20-30 percent of the planet at 20-30-m resolution and several percent at 3-5 m resolution. These figures compare favorably to the coverage provided by recent imaging systems orbiting Mars. Our strategy calls for the first cycle of coverage to be devoted to imaging large geographic areas (e.g., Thetis Regio) at 20-30-m resolution with interleaved observation of pre-selected targets at high resolution. The second cycle will include additional imaging, but the focus will be repeat-pass coverage to obtain topography for a significant fraction of the first-cycle targets. A focus of the third cycle will be InSAR-based deformation studies of selected areas. All components of the spacecraft are expected to remain operational well beyond the nominal mission time, so global mapping at 10 m or better resolution during an extended mission is conceivable. RAVEN will allow us to determine both the broad framework of the planet’s geologic history (e.g, uniformitarian versus catastrophic evolution) and the nature of current geologic activity. It will substantially advance our understanding of Venus and reveal details, issues, and further questions that will benefit future site-specific missions such as probes and landers. Current RAVEN science team members are Buck Sharpton (PI), Rudi Gens, Rebecca Ghent, Martha Gilmore, Robert Grimm, Robert Herrick, Catherine Johnson, Patrick McGovern, Franz Meyer, Peter Mouginis-Mark, Jeff Plaut, David Sandwell, Mark Simons, and Sean Solomon.
Herrick Robert R.
Rogers Fred
Sharpton Virgil L.
Waterman S.
No associations
LandOfFree
RAVEN - High-resolution Mapping of Venus within a Discovery Mission Budget does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with RAVEN - High-resolution Mapping of Venus within a Discovery Mission Budget, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and RAVEN - High-resolution Mapping of Venus within a Discovery Mission Budget will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1770673