Rational morphisms between quasilinear hypersurfaces

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We prove analogues of several well-known results concerning rational morphisms between quadrics for the class of so-called quasilinear $p$-hypersurfaces. These hypersurfaces are nowhere smooth over the base field, so many of the geometric methods which have been successfully applied to the study of projective homogeneous varieties over fields cannot be used. We are therefore forced to take an alternative approach, which is partly facilitated by the appearance of several non-traditional features in the study of these objects from an algebraic perspective. Our main results were previously known for the class of quasilinear quadrics. We provide new proofs here, because the original proofs do not immediately generalise for quasilinear hypersurfaces of higher degree.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Rational morphisms between quasilinear hypersurfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Rational morphisms between quasilinear hypersurfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rational morphisms between quasilinear hypersurfaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-68896

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.