Computer Science – Databases
Scientific paper
2007-11-13
Computer Science
Databases
18 pages, 8 figures, 7 tables. Presented at the ALPSWS2006 First International Workshop on Applications of Logic Programming i
Scientific paper
We address the problem of answering Web ontology queries efficiently. An ontology is formalized as a Deductive Ontology Base (DOB), a deductive database that comprises the ontology's inference axioms and facts. A cost-based query optimization technique for DOB is presented. A hybrid cost model is proposed to estimate the cost and cardinality of basic and inferred facts. Cardinality and cost of inferred facts are estimated using an adaptive sampling technique, while techniques of traditional relational cost models are used for estimating the cost of basic facts and conjunctive ontology queries. Finally, we implement a dynamic-programming optimization algorithm to identify query evaluation plans that minimize the number of intermediate inferred facts. We modeled a subset of the Web ontology language OWL Lite as a DOB, and performed an experimental study to analyze the predictive capacity of our cost model and the benefits of the query optimization technique. Our study has been conducted over synthetic and real-world OWL ontologies, and shows that the techniques are accurate and improve query performance. To appear in Theory and Practice of Logic Programming (TPLP).
Ruckhaus Edna
Ruiz Eduardo
Vidal Maria-Esther
No associations
LandOfFree
Query Evaluation and Optimization in the Semantic Web does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Query Evaluation and Optimization in the Semantic Web, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Query Evaluation and Optimization in the Semantic Web will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-529874