Mathematics – Probability
Scientific paper
2006-09-25
Mathematics
Probability
Soumis dans les Comptes rendus - Math\'ematique
Scientific paper
We give some approximations of the local time process $(L_t^x)_{t\geqslant 0}$ at level $x$ of the real Brownian motion $(X_t)$. We prove that $ \frac{2}{\epsilon}\int_0^{t} X_{(u+\epsilon)\wedge t}^+ \indi_{\{X_u \leqslant 0\}} du + \frac{2}{\epsilon}\int_0^{t} X_{(u+\epsilon) \wedge t}^- \indi_{\{X_u>0\}} du$ and $\frac{4}{\epsilon}\int_0^{t} X_u^- \indi_{\{X_{(u+\epsilon) \wedge t} > 0\}} du$ converge in the ucp sense to $L_t^0$, as $\epsilon \to 0$. We show that $ \frac{1}{\epsilon}\int_0^t (\indi_{\{x
Bergery Blandine Berard
Vallois Pierre
No associations
LandOfFree
Quelques approximations du temps local brownien does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quelques approximations du temps local brownien, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quelques approximations du temps local brownien will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-15697