Mathematics – Spectral Theory
Scientific paper
2003-04-07
Mathematics
Spectral Theory
Scientific paper
The notion of a quasi-free Hilbert module over a function algebra $\mathcal{A}$ consisting of holomorphic functions on a bounded domain $\Omega$ in complex $m$ space is introduced. It is shown that quasi-free Hilbert modules correspond to the completion of the direct sum of a certain number of copies of the algebra $\mathcal{A}$. A Hilbert module is said to be weakly regular (respectively, regular) if there exists a module map from a quasi-free module with dense range (respectively, onto). A Hilbert module $\mathcal{M}$ is said to be compactly supported if there exists a constant $\beta$ satisfying $\|\phi f \| \leq \beta \|\phi \|_X \|f\|$ for some compact subset $X$ of $\Omega$ and $\phi$ in $\mathcal{A}$, $f$ in $\mathcal{M}$. It is shown that if a Hilbert module is compactly supported then it is weakly regular. The paper identifies several other classes of Hilbert modules which are weakly regular. In addition, this result is extended to yield topologically exact resolutions of such modules by quasi-free ones.
Douglas Ronald G.
Misra Gadadhar
No associations
LandOfFree
Quasi-free resolutions of Hilbert modules does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quasi-free resolutions of Hilbert modules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quasi-free resolutions of Hilbert modules will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-522214