Quantum-mechanical computers and uncomputability

Computer Science – Information Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9

Information Theory And Communication Theory, Quantum Mechanics

Scientific paper

The time evolution operator for any quantum-mechanical computer is diagonalizable, but to obtain the diagonal decomposition of a program state of the computer is as hard as actually performing the computation corresponding to the program. In particular, if a quantum-mechanical system is capable of universal computation, then the diagonal decomposition of program states is uncomputable. As a result, in a universe in which local variables support universal computation, a quantum-mechanical theory for that universe that supplies its spectrum cannot supply the spectral decomposition of the computational variables. A ``theory of everything'' can be simultaneously correct and fundamentally incomplete.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quantum-mechanical computers and uncomputability does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quantum-mechanical computers and uncomputability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum-mechanical computers and uncomputability will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1495118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.