Nonlinear Sciences – Exactly Solvable and Integrable Systems
Scientific paper
2005-10-21
Nonlinear Sciences
Exactly Solvable and Integrable Systems
34 pages. v2: a misprint corrected
Scientific paper
A lattice model of interacting q-oscillators, proposed in [V. Bazhanov, S. Sergeev, arXiv:hep-th/0509181], is the quantum mechanical integrable model in 2+1 dimensional space-time. Its layer-to-layer transfer-matrix is a polynomial of two spectral parameters, it may be regarded in the terms of quantum groups both as a sum of sl(N) transfer matrices of a chain of length M and as a sum of sl(M) transfer matrices of a chain of length N for reducible representations. The aim of this paper is to derive the Bethe Ansatz equations for the q-oscillator model entirely in the framework of 2+1 integrability providing the evident rank-size duality.
No associations
LandOfFree
Quantum curve in q-oscillator model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantum curve in q-oscillator model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum curve in q-oscillator model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-89254