Statistics – Applications
Scientific paper
2008-07-29
Annals of Applied Statistics 2008, Vol. 2, No. 2, 736-755
Statistics
Applications
Published in at http://dx.doi.org/10.1214/07-AOAS157 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Ins
Scientific paper
10.1214/07-AOAS157
Quantitative Magnetic Resonance Imaging (qMRI) provides researchers insight into pathological and physiological alterations of living tissue, with the help of which researchers hope to predict (local) therapeutic efficacy early and determine optimal treatment schedule. However, the analysis of qMRI has been limited to ad-hoc heuristic methods. Our research provides a powerful statistical framework for image analysis and sheds light on future localized adaptive treatment regimes tailored to the individual's response. We assume in an imperfect world we only observe a blurred and noisy version of the underlying pathological/physiological changes via qMRI, due to measurement errors or unpredictable influences. We use a hidden Markov random field to model the spatial dependence in the data and develop a maximum likelihood approach via the Expectation--Maximization algorithm with stochastic variation. An important improvement over previous work is the assessment of variability in parameter estimation, which is the valid basis for statistical inference. More importantly, we focus on the expected changes rather than image segmentation. Our research has shown that the approach is powerful in both simulation studies and on a real dataset, while quite robust in the presence of some model assumption violations.
Cao Yue
Johnson Timothy D.
Little Roderick J. A.
Zhang Xiaoxi
No associations
LandOfFree
Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-38870