Quantifying the uncertainties of chemical evolution studies. II. Stellar yields

Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

28 pages, 23 figures. Accepted for publication in A&A

Scientific paper

This is the second paper of a series which aims at quantifying the uncertainties in chemical evolution model predictions related to the underlying model assumptions. Specifically, it deals with the uncertainties due to the choice of the stellar yields. We adopt a widely used model for the chemical evolution of the Galaxy and test the effects of changing the stellar nucleosynthesis prescriptions on the predicted evolution of several chemical species. We find that, except for a handful of elements whose nucleosynthesis in stars is well understood by now, large uncertainties still affect the model predictions. This is especially true for the majority of the iron-peak elements, but also for much more abundant species such as carbon and nitrogen. The main causes of the mismatch we find among the outputs of different models assuming different stellar yields and among model predictions and observations are: (i) the adopted location of the mass cut in models of type II supernova explosions; (ii) the adopted strength and extent of hot bottom burning in models of asymptotic giant branch stars; (iii) the neglection of the effects of rotation on the chemical composition of the stellar surfaces; (iv) the adopted rates of mass loss and of (v) nuclear reactions, and (vi) the different treatments of convection. Our results suggest that it is mandatory to include processes such as hot bottom burning in intermediate-mass stars and rotation in stars of all masses in accurate studies of stellar evolution and nucleosynthesis. In spite of their importance, both these processes still have to be better understood and characterized. As for massive stars, presupernova models computed with mass loss and rotation are available in the literature, but they still wait for a self-consistent coupling with the results of explosive nucleosynthesis computations.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quantifying the uncertainties of chemical evolution studies. II. Stellar yields does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quantifying the uncertainties of chemical evolution studies. II. Stellar yields, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantifying the uncertainties of chemical evolution studies. II. Stellar yields will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-154018

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.