Quantifying the complexity of random Boolean networks

Nonlinear Sciences – Cellular Automata and Lattice Gases

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7 pages, 4 figures

Scientific paper

We study two measures of the complexity of heterogeneous extended systems, taking random Boolean networks as prototypical cases. A measure defined by Shalizi et al. for cellular automata, based on a criterion for optimal statistical prediction [Shalizi et al., Phys. Rev. Lett. 93, 118701 (2004)], does not distinguish between the spatial inhomogeneity of the ordered phase and the dynamical inhomogeneity of the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical regimes and for highly disordered networks, peaking somewhere in the disordered regime. Individual nodes with high complexity are the ones that pass the most information from the past to the future, a quantity that depends in a nontrivial way on both the Boolean function of a given node and its location within the network.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quantifying the complexity of random Boolean networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quantifying the complexity of random Boolean networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantifying the complexity of random Boolean networks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-63565

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.