Quantifying cosmic variance

Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Accepted for publication in MNRAS

Scientific paper

We determine an expression for the cosmic variance of any "normal" galaxy survey based on examination of M* +/- 1 mag galaxies in the SDSS DR7 data cube. We find that cosmic variance will depend on a number of factors principally: total survey volume, survey aspect ratio, and whether the area surveyed is contiguous or comprised of independent sight-lines. As a rule of thumb cosmic variance falls below 10% once a volume of 10^7h_0.7^-3Mpc^3 is surveyed for a single contiguous region with a 1:1 aspect ratio. Cosmic variance will be lower for higher aspect ratios and/or non-contiguous surveys. Extrapolating outside our test region we infer that cosmic variance in the entire SDSS DR7 main survey region is ~7% to z < 0.1. The equation obtained from the SDSS DR7 region can be generalised to estimate the cosmic variance for any density measurement determined from normal galaxies (e.g., luminosity densities, stellar mass densities and cosmic star-formation rates) within the volume range 10^3 to 10^7 h^-3_0.7Mpc^3. We apply our equation to show that 2 sightlines are required to ensure cosmic variance is <10% in any ASKAP galaxy survey (divided into dz ~0.1 intervals, i.e., ~1 Gyr intervals for z <0.5). Likewise 10 MeerKAT sightlines will be required to meet the same conditions. GAMA, VVDS, and zCOSMOS all suffer less than 10% cosmic variance (~3%-8%) in dz intervals of 0.1, 0.25, and 0.5 respectively. Finally we show that cosmic variance is potentially at the 50-70% level, or greater, in the HST Ultra Deep Field depending on assumptions as to the evolution of clustering. 100 or 10 independent sightlines will be required to reduce cosmic variance to a manageable level (<10%) for HST ACS or HST WFC3 surveys respectively (in dz ~ 1 intervals). Cosmic variance is therefore a significant factor in the z>6 HST studies currently underway.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quantifying cosmic variance does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quantifying cosmic variance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantifying cosmic variance will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-519816

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.